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Robust chaos in dynamic optimization models 
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Summary 

The purpose of this paper is to investigate the (theoretical) 
importance of chaos as a phenomenon occurring in dynamic 
optimization problems. The intertemporal models we focus on 
are specified by a standard aggregative production function, an 
immediate return function depending on current consumption, 
capital input and a taste parameter, and a discount factor. 
‘* We interpret “chaos” as a situation in which the Liapounov 
exponent of the relevant dynamical system is positive. This 
notion of chaos is related to the concept of “unpredictability” as 
measured by the Kolmogorov-Sinai entropy. 

In the family of intertemporal models, indexed by the taste 
parameter (with values lying in a closed interval), chaos is 
considered to be an “unimportant” phenomenon, if the set of 
parameter values for which chaos occurs is of Lebesgue 
measure zero. 

We identify a family of dynamic optimization models, for which 
the optimal transition functions are represented by the quadratic 
family of maps. Relying on the mathematical literature on the 
robustness of chaos for this family of maps, we conclude that 
chaos cannot be considered to be an unimportant phenomenon 
in dynamic optimization models. 

J.E.L. Classification: 022, I1 1. 
Keywords: Chaos, dynamic optimization. 

1. Introduction 

During the last two decades, there have been major developments 
in understanding the global behaviour of non-linear processes, and 
the “complexities” that “simple” dynamic processes can give rise 
to. Progress in the mathematics literature has naturally led to 
applications in dynamic economics. In a variety of contexts, 
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ranging from overlapping generations models (Benhabib & Day, 
1982) to models of the price tatonnement (Bala & Majumdar, 1996; 
Day & Pianigiani, 1991), from purely descriptive models (Day & 
Shafer, 1987; Bhaduri & Harris, 1987) to (infinite-horizon) dynamic 
optimization models (Deneckere & Pelikan, 1986; Boldrin & Mon- 
trucchio, 1986), it has been noted that the dynamic behaviour of 
relevant economic magnitudes can exhibit “chaos”. 

In this paper, we would like to evaluate the importance of 
chaotic behaviour arising from dynamic optimization models, by 
enquiring whether such behaviour is sufficiently robust (at even a 
theoretical level) to warrant attention by empirical economists. 
More specifically, the question we address is “Is chaos an 
unimportant phenomenon for dynamic optimization models?” 

Before we can hope to answer the question, we have to be very 
precise about what it means. The class of dynamic optimization 
models which are of interest to us is described in detail in Section 
2. Sections 3 and 4 provide a survey of some of the key mathemat- 
ical concepts involved in the study of chaos, and also clarify what 
we mean by chaos in the context of our question. Specifically, 
Section 3 discusses topological chaos [i.e. chaos in the sense of Li 
and Yorke (1975)], and finds it to be an unsuitable indicator of 
“unpredictability” of asymptotic dynamic behaviour. Section 4 
discusses the concepts of ergodic chaos, positive Liapounov expo- 
nent and sensitive dependence on initial conditions (in the sense of 
Guckenheimer, 1979), and shows how chaos in these senses can be 
related to (measure-theoretic) entropy, the classic measure of 
uncertainty. Section 5 summarizes the main mathematical results, 
for the quadratic family of maps, on the robustness of chaos. We 
interpret “unimportance” as lack of robustness and apply these 
mathematical results in Section 6 to a constructed family of 
dynamic optimization models to answer the question in the nega- 
tive. [This construction relies on our earlier work, reported in 
Majumdar and Mitra (1992).] 

A drawback of our construction is that it involves discount 
factors which are unrealistically low. Whether a similar result can 
be obtained with more reasonable discount factors remains an 
open question.? 

2. Dynamic optimization models 

Our analysis deals with a discrete-time aggregative model of 
“discounted” dynamic optimization where the one period return or 
“felicity” function depends on both consumption and capital stock. 

t The work of Sorger (1992) indicates that if the quadratic family of maps, (for ,U 
near 4) are policy functions for a family of dynamic optimization problems, then 
the discount factors used in such problems must be unrealistically low. 
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The need for studying such a model has been stressed in the theory 
of optimal growth and also in the economics of natural resources. 
The “standard” aggregative model of capital accumulation in 
which felicity is derived solely from consumption is a special case 
of our framework. 

2.1. DESCRIPTION OF THE FRAMEWORK 

Consider an economy E specified by a gross output function f: 
g+-‘.@+, a felicity (return) function w: .4?‘“,+W, and a discount 
factor 6 E (OJ). The following assumptions on fare used: 

(F.1) f (0) = 0; f is continuous on S!+. 

(F.2) f is non-decreasing and concave on .GLP+. 

(F.3) There is some K> 0 such that f(x)> x when O< XC K and 
f(x) < x when x > K. 

To describe some of the remaining assumptions as well as our 
results, it is convenient to define a set R= { (x,2) E B!$z<f(x)}. 

The following assumptions on w are used: 

(W.l) w(x,c) is continuous on 92,. 

(W.2) w(x,c) is non-decreasing in x given c, and non-decreasing in 
c given x on .9‘“+. 
Furthermore, if x > 0, w(x,c) is strictly increasing in c on R. 

(W.3) w(x,c) is concave on 99:. Furthermore, if x >O, w(x,c) is 
strictly concave in c on Cl. 

A program from x > 0 is a sequence (x,)2 satisfying 

X0=X, O<X,+l<f(x,) for t30 

The consumption sequence (c,+i)g is given by 

c,+l=f(xt)-x,+l for t>O 

It is easy to verify that for every program (x&j” from x30, we have 

( x,,c,+,)dW= max(K,x) for all t 2 0. 

In particular, if x E [O,K], then x,, c,+~< K for all t 20. 
A program (QF from x > 0 is optimal if 

2 ~W&,~t+ 1) 2 5 ~Wx,,c,+ 1) 
t=o t=o 

for every program (xl)2 from x. 
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From the point of view of the economic interpretation of the 
above framework, the following remarks are useful. 

,In the literature on optimal growth with wealth effect (Koop- 
mans, 1967; Kum, 1968), c,, 1 is consumption and x, the capital stock 
which has a wealth effect on the felicity, w. 

In the literature on resource economics (Clark, 1976; Dasgupta, 
198% c,+l is harvest and x, the stock (bio-mass) of the resource, 
which affects the return, w, via the effort needed to secure the 
harvest. 

2.2. VALUE AND POLICYFUNCTIONS 

A standard argument can be used to show that given any x 20 
there is some optimal program (QF from x. Furthermore, the 
optimal program is unique. We can define a value function, VI 
9Q+W by 

V(x) = 2 6tw(2t,tt+ 1) 
t=o 

and the optimal transition function, h: %‘++&A!, by 

h(x) = f, 

where (it); is the optimal program from x 2 0. 
In order to proceed with our discussion, it is convenient now to 

define the (“reduced-form utility”) function u: !2+W by 

u(x,z) - w(x,f (x) - 2) 

The properties of V and h can then be summarized in the following 
result. 

PROPOSITION 1: 
(i) The value function V is the unique continuous real-valued 

function on [O,K] satisfying the functional equation of dynamic 
programming 

vex) = cxmzy~o 1 [u(v) + SVC4 1 

Further, V is concave and non-decreasing on %‘+. 
(ii) The transition function h satisfies the following property: for 

each x E A%‘+, h( ) x is the unique solution to the constrained 
maximization problem: 
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“maximize z&z) + 6 V(z) 
subject to (x,2) E 0”. 
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FU?. rmore, h is continuous on 99,. 

3. Topological chaost 

3.1. DEFINITIONS 

Let X be a closed interval [a#] of the real line (with a c/3), and h a 
continuous map fom X to X. We refer to X as the state space, and to 
h as the law of motion of the state variable x E X. The pair (X,h) is 
called a dynamical system. Thus, if x, E X is the state of the system 
in time period t (where t = 0,1,2,. . .), then xt+i = h(x,) E X is the state 
of the system in time period (t + 1). 

We write h’(x) = x and for any integer j 2 1, hi(x) = h[hj-l(x)]. If x E 
X, the sequence z(x) = (hj(x))s, is called the trajectory from (the 
initial condition) x. The orbit from x is the set y(x)=(y:y = hi(x) for 
some j>O}. The asymptotic behaviour of a trajectory from x is 
described by the limit set, which is defined as the set of all limit 
points of z(x), and is denoted by o(x). 

A point x E X is a fixed point of h if h(x) = x. A point x E X is called 
periodic if there is k 2 1 such that h’(x) = x. The smallest such k is 
the period of x. (In particular, if x E X is a fixed point of h, it is 
periodic with period 1). We denote the set of periodic points in X by 
P(X). Its complement in X, the set of non-periodic points in X, is 
denoted by N(X). 

Note that if x E X is a periodic point, then o(hj(x)) = y(x) for every 
j=O,l,.... A periodic point 5 E X is stable if there is an open interval 
@ (in X) containing Z, such that w(x) = y(X) for all x E I& In this 
case we also say that the periodic orbit y(Z) is stable. If h is 
continuously differentiable on X, and Z is a periodic point of period 
k, then a sufficient condition for 2 to be stable is that 1 Dhk(E) ( < 1. If 
IDhk(5)\ > 1, then Z is not stable. 

3.2. THE LI-YORKE THEOREM 

A basic result characterizing the behaviour of the dynamical 
system (X,h) has been given by Li and Yorke (1975), and may be 
stated as follows. 

THEORI?M 1 (Li-Yorke): let a,/? be in .B?, with a -C/L Suppose X =[a&‘l 
and h: X+X is continuous. If there is x* E X such that 

t The exposition of this section is based on our earlier work, reported in 
Majumdar and Mitra (1993). 
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h3(x*) <x* < h(x*) < h2(x*) a-Y) 

then 

(9 for every integer k > 1, there is aperiodic point xk E X with 
period k; 

(ii) there is an uncountable set W cN(X) satisfying the 
following conditions; 

(a) If x,y E W with x#y, then 

lim supIhk(X)-h?y)I >O 
k-cc 

and 

lim infIhk(X)-hk(y)I=O; 
k-co 

(b) If x E Wand y E P(X) then 

lim inf)hk(r)-hkb)I ~0. 
k+m 

The dynamical system (X,h) is said to exhibit topological chaos if 
conditions (i) and (ii) of theorem 1 are satisfied. Thus, the Li-Yorke 
condition (L-Y) is a sufficient condition for topological chaos; its 
simplicity makes it easily verifiable. For example, if X = [O,l], and 
h(x) = 4x(1 - x) for x E X, then it can be easily checked that (L-Y) is 
satisfied by the point x* = [,/2 - l]/JS. 

3.3. THE QUADRATIC FAMILY 

While the Li-Yorke theorem applies to any map, h, which is 
continuous on X, our subsequent analysis of the concept of 
topological chaos will be confined to a more restricted class of 
functions, viz. those described by the “quadratic family” of maps. 
(We note, parenthetically, that much of this discussion remains 
valid for a class of unimodal maps with “negative Schwarzian 
derivative”.) 

Let X = [O,l] and I= [1,4]. The quadratic family of maps is then 
defined by 

h,(x) =&l - x) for (2,~) E X x I 

We interpret x as the variable and ,u as the parameter of the map h. 
A few observations about the quadratic family are useful at this 

point. Note that for each parameter specification p E I, the state 
space is the same. Thus, we can conveniently examine a family of 
dynamical systems (X,h,) parametrized by ,u. 
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For each p E I, h, has exactly one critical point [that is, a point 
where Dh,(x) = 01, and this critical point (equal to 0.5) is independ- 
ent of the parameter p. 

3.4. STABLE PERIODIC ORBITS 

Even though there may be an infinite number of periodic orbits for 
a given dynamical system (as in the Li-Yorke theorem), a striking 
result, due to Julia and Singer,? informs us that there can be at 
most one stable periodic orbit. 

THEOREM 2 (Julia-Singer): let X= [OJ], I= [1,4]; given some ,u E I, 
define h,(x) = ,ux(l - x) for x E X. Then there can be at most one stable 
periodic orbit. Furthermore, if there is a stable periodic orbit, then 
0(0*5), the limit set of x* = 0.5, must coincide with this orbit. 

Suppose, now, that we have a stable periodic orbit. This means 
that the asymptotic behaviour (limit sets) of trajectories from all 
initial states “near” this periodic orbit must coincide with the 
periodic orbit. But, what about the asymptotic behaviour of 
trajectories from other initial states? If one is interested in the 
behaviour of a “typical” trajectory, a remarkable result, due to 
Misiurewicz (1983), settles this question. Let 1 denote the Lebesgue 
measure on [O,l]. 

THEOREM 3 (Misiurewicz): let X= [O,l], I= [1,4]; given some ,u E I, 
define h (x) =px(l - x) for x E X. Suppose there is a stable periodic 
orbit. fhen for 1 1 t -a mos every x E [O,l], o(x) coincides with this 
orbit. 

Combining the above two results, we have the following scen- 
ario. Suppose we do have a stable periodic orbit. Then there are no 
other stable periodic orbits. Furthermore, the (unique) stable 
periodic orbit “attracts” the trajectories from almost every initial 
state. Thus, one can make the qualitative prediction that the 
asymptotic behaviour of the “typical” trajectory will be just like 
the given stable periodic orbit. 

It is important to note that the above scenario (existence of a 
stable periodic orbit) is by no means inconsistent with condition 
(L-Y) of the Li-Yorke theorem (and hence with its implications). 
Let us elaborate on this point following Devaney (1989) and Day 
and Pianigiani (1991). Consider p = 3839, and write h(x) = ,~x(l - x) 
for x e X. Choosing x* = O-1498, it can be checked that there is 

t Julia proved the result for the quadratic family. Singer extended it to the 
broader. class of unimodal maps having “negative Schwarzian derivative”; for 
details, see Singer (1978). 



232 M. MAJUMDAR AND T. MITRA 

0~ e<03001 such that ha(x) maps the interval UE [X*-E, x* +E] 
into itself, and IDh3(x)d < 1 f or all x E U. Hence, there is f E U such 
that h3(2) = 2, and 1 Dh (32) 1 < 1. Thus, f is a periodic point of period 
3, and it can be checked (by choice of the range of E) that 
h3(32) = 3 < h(2) < h’(2) so condition (L-Y) of theorem 1 is satisfied. 
Also, 32 is a periodic point of period 3 which is stable, so that 
theorem 3 is also applicable. Then we may conclude that the set W 
of “chaotic” initial states in theorem 1 must be of Lebesgue- 
measure zero. In other words, topological chaos exists, but is not 
“observed” when p = 34339. 

This discussion makes it clear that “topological chaos” is 
unsuitable in general for the purpose of signaling “unpredictabi- 
lity” of outcomes of a dynamical system. If by chaos we mean 
unpredictability, we have to look for alternate concepts. 

4. Chaos and unpredictability 

Quite a different asymptotic behaviour of a “typical” trajectory 
(from that discussed in the previous section) may be observed when 
there is no stable periodic orbit. In order to capture this behaviour 
precisely, several concepts of chaos have been proposed, and we 
discuss briefly three which have received the most prominence in 
the literature. We also try to indicate some of the relationships 
among the three concepts, while cautioning the reader that not all 
the subtle connections among these concepts are as yet fully 
understood. 

4.1. CONCEPTS OF CHAOS 

Ergodic chaos 

Lets be the Bore1 a-field of X, and u a probability measure or-y. 
Thus, (Xg,v) is a probability space. If h iss-measurable, then IJ is 
called invariant under h if u (E) = u(h-l(E)) for all E ing; u is called 
ergodic if “E ~9 and h-l(E)=E” implies “u(E)=0 or 1”. 

The dynamical system (X,h) exhibits ergodic chaos if there is an 
ergodic invariant measure u that is absolutely continuous with 
respect to the Lebesgue measure (that is, if E is a set in the Bore1 g- 
field of X, and A(E)= 0, then u(E) = 0). In this case, u is called an 
ergodic measure of h. 

If u is an ergodic measure of h, then the ergodic theorem? informs 
us that for every u-integrable function Y on X, we have 

t See Lanford (1983) for a discussion of the ergodic theorem. 
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lim (l/T) 5 Y(hk(x))=JYdu 
T-CC k=O 
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for v-almost every x E X. Denoting the density of u by p, we then 
have for any u-measurable set A, 

lim (l/T) [cardinality {k < Z’9zk(x) E A)] = JpdA 
T-C0 

for u-almost every x E X. That is, for any u-measurable set A, u(A) 
measures the fraction of the time a trajectory from x spends in the 
set A, for almost every x in the support of the measure u. 

Positive Liapounou exponent 

Let h:X+X be continuously differentiable. Then, for any x E X, the 
Liapounou exponent r(x) is defined as 

For sufficiently large t and small E > 0, the Liapounov exponent 
satisfies (approximately) the relation 

set<(“) x 1 ht(x + E) - ht(x) 1 

The right-hand side indicates how far apart x and X+E are under t 
iterates of h. Thus, when c(x)>O, initially nearby points are 
stretched (by the successive iterations of h) at a positive exponen- 
tial rate. 

Suppose the dynamical system (X,h) exhibits ergodic chaos with 
u an ergodic measure of h. If h is continuously differentiable on X, 
and In Ih’ I is u-integrable, then by the ergodic theorem for u-almost 
every x E X, the Liapounov exponent exists and 

l(x) = jln I h’ I du 

Thus, for u-almost every x E X, the Liapounov exponent is a 
constant, which we can denote unambiguously by 5. We will say 
that the dynamical system (X,h) exhibits positive Liapounou expo- 
nent if c>O. 
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Sensitive dependence on initial conditions 

The dynamical system (X,h) has sensitive dependence on initial 
conditions if there is a set Y c X of positive Lebesgue measure and 
an E > 0, such that given any x E Y, and any neighbourhood U of x, 
there is y E U and n B 0 such that 1 h”(x) - h”Cy) I> E. 

This concept, which is due to Guckenheimer (1979), has a 
precursor in the work of Li and Yorke (1975), but it is worth 
emphasizing that an important distinction comes from the fact that 
the set Y in Guckenheimer’s definition has to be of positive 
Lebesgue measure, whereas the set Win the Li-Yorke theorem can 
have Lebesgue measure zero. Observe that when sensitive depend- 
ence on initial conditions holds (in the sense of Guckenheimer), no 
matter how small we choose the neighbourhood U, at least two of 
its points are significantly apart under sufficient iteration of h. 
Thus, the trajectory from an initial point will be sensitive to the 
choice of the initial point, under repeated action of the map h. 

Compared to the notion of a positive Liapounov exponent, 
Guckenheimer’s concept requires less uniformity in “stretching”, 
since given any neighbourhood U of x, there may be points y and z 
in U, with z#y, such that the trajectories from x and z stay close to 
each other over time, but the trajectories from x and y drift 
significantly apart. (In practice, of course, this possibility appears 
to be rather implausible for all iterates.)? 

4.2. CONCEPT OF UNPREDICTABILITY 

While each of the concepts of chaos discussed in the last section 
might point to some difficulty in making predictions, the connec- 
tion between chaos and unpredictability deserves more formal 
analysis. To this end, one might start by discussing yet another 
concept, the measure-theoretic entropy (also known as “metric 
entropy” or “Kolmogorov-Sinai invariant”) which measures dir- 
ectly the “uncertainty” in an experiment about the outcome, or 
equivalently the “information” gained by ,conducting the experi- 
ment.$ 

Suppose the dynamical system (X,h) has an invariant measure, v. 
Let J={J,,...., J,} be a finite, v-measurable partition of X. The 
entropy of the partition J is 

H(v,J)= f v(J,)Iln v(Ji)l 
i=l 

t For a more exhaustive discussion of the two concepts, see Collet and 
Eckmann (1980). 

$ For a more extensive discussion on the measure-theoretic entropy, the reader 
is referred to the review by Eckmann and Ruelle (1985). 
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If J= {J,, . . ., J,} is a partition, denote by h-‘J the partition 
(f-‘J, ,..., f’J}.IfJ={J, ,..., J,}andJ’=(J;‘,..., 4)arepartitionsof 
X, then J V /is the partition consisting of sets of the form Ji n< 
for all i l (1 ,...,P>,j E u,..., q}. We can then define 

q(v,J)= lim (l/n)H(v, JVf-lJV...Vf-n+lJ) 
n--r* 

Finally, the measure-theoretic entropy is defined as 

where the supremum is taken over all partitions J of X for which 
H(u, J) < 00. 

Suppose the dynamical system (X,h) has an invariant ergodic 
measure, u, which is absolutely continuous with respect to 
Lebesgue measure. If h is continuously differentiable and In 1 h’l is 
u-integrable then, as we have noted above, the Liapounov 
exponent exists and is a constant (denoted by l) u-almost every- 
where. A basic formula relating the measure-theoretic entropy to 
the Liapounov exponent (due to Ruelle, 1978) is given by the 
following inequality: 

5. Results on chaos and unpredictability for the quadratic family 

We have already noted (in Section 3) that a weakness in the 
concept of topological chaos in signalling “complicated” or 
“unpredictable” behaviour is that such behaviour might be con- 
fined to trajectories starting from a set of initial states, which has 
Lebesgue measures zero and, therefore, would not be “observable”. 

We can pursue this line of argument a step further. If we 
consider a family of dynamical systems (X,h,) parametrized by ,u 
(belonging, say, to some closed interval), we can ask whether chaos 
(in the sense of any of the concepts introduced in Section 4) arises 
only for a set of parameter values which is of Lebesgue measure 
zero. If this is the case, then one could argue that a typical 
dynamical system (of this family) is “well-behaved” even though 
for some accidental cases the system might be chaotic. 

This is a difficult question to answer. As far as we know, definite 
results are known for limited classes of dynamical systems. We 
present, in this section, the basic results for the quadratic family of 
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maps, introduced earlier in Section 3. The fundamental result 
showing that ergodic chaos and sensitive dependence on initial 
conditions holds for a set of parameter values of positive Lebesgue 
measure is due to Jakobson (1981) and establishes robustness of 
chaos for the quadratic family of maps.? 

THEOREM 4 (Jakobson): let X=[O,l], 1=[1,4] and h,(x)=,~ux(l-x) 
for (x,p) E X x I. Then, the set A={,u E I: (X,h,) exhibits ergodic 
chaos} has positive Lebesgue measure. Furthermore, there is a set A’ 
c A, of positive Lebesgue measure, such that for all p E A’, the 
dynamical system (X,h,) exhibits sensitive dependence on initial 
conditions. 

More recently, building on the earlier work of Rychlik (1988), we 
have the following result due to Rychlik and Sorets (1992). 

THEOREM 5 (Rychlik & Sorets): let X= [O,l], I= [1,4] and 
h,(x) =,ux(l- x) for (x,,u) E X x I. Then the set A= {p E I: (X,h,) 
exhibits ergodic chaos) has positive Lebesgue measure. Furthermore, 
there is a set A” c A, of positive Lebesgue measure, such that for all ,u 
E A”, the dynamical system (X,h,) has (i) an ergodic measure, v, 
whose density is an LP function for p E [1,2); and (ii) a positive 
Liapounov exponent. 

These results show that chaos (in the sense of the concepts 
introduced in Section 4) occurs for a non-negligible set of para- 
meter values; it cannot be dismissed as “accidental”. 

Finally, we indicate how our discussion of chaos can be related 
to that of unpredictability by stating the following result which 
can be deduced from Ledrappier (1981:p. 79). 

THEOREM 6: let X= [O,l], I= [1,4] and h,(x)=,ux(l- x) for (x,p) E 
X x I. If n E I is a parameter value for which (X,h,) exhibits ergodic 
chaos, with an ergodic measure v, In 1 hll is v-integrable, and (X,h,) 
has a positive Liapounov exponent (EJ, then the Liapounov exponent 
equals-the measure-theoretic entropy of v; that is r = q(v). 

REMARK: for p E A” as given in theorem 5, it can be checked that 
In 1 h, 1 is v-integrable, so that theorem 6 can be used to conclude 
that the positive Liapounov exponent, c, is also the measure 
theoretic entropy of the dynamical system (X,h,). 

t Alternative approaches to the theorem of Jakobson can be found in the work 
of Benedicks-Carleson (1985), Johnson (1986), and Rychlik (1988). 
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6. Is chaos an unimportant phenomenon for dynamic optimization 
models? 

6.1. THE QUESTION 

In this section we return to the dynamic optimization models 
introduced in Section 2, and try to answer the question posed 
above. For this purpose, our concept of “chaos” will be very strong 
indeed: a situation in which all the conclusions of the Rychlik-Sor- 
ets theorem (theorem 5) hold. We will consider chaos to be 
“unimportant” if, for every family of economies (suitably parame- 
trized), the set of economies for which the corresponding policy 
function exhibits chaos is of Lebesgue measure zero. 

This requires a discussion of what we will mean by a “family of 
economies”. Specifically, if we allow an arbitrary set of economies 
(parametrized suitably by a real-valued parameter, p) without 
saying how the set depends on p, we might get a trivial “no” 
answer to the question posed above. (For example, all the econo- 
mies in the family might have the same policy function, namely 
4x(1-x), a map which is well-known to be chaotic in the sense 
described above.) 

In order to rule out such trivial results, we impose a condition on 
the family of economies that are admissible. We only consider sets 
of economies, written as (w,fJ), which yield policy functions h, 
satisfying the property that h,(x)=ph(z). Thus, h is the common 
ingredient of the family, and ,u distinguishes one family member 
from another. This is admittedly somewhat ad hoc but it rules out 
trivial cases by ensuring a sufficiently rich class of economies for 
which the question (posed above) has to be answered. 

Formally, let (w,f$),, be any family of economies (with the 
parameter belonging to a closed interval, I), such that for p E I, the 
policy function h,(x)=ph@). Let V={p E I:hp exhibits chaos}. The 
question to be answered is the following: for every such family of 
economies, is the Lebesgue measure of V (that is, A(V)) equal to 
zero? 

6.2. THE ANSWER: HEURISTICS 

Clearly, if we can construct a family of economies, (w,fJ),, such 
that the corresponding policy function hp satisfies 

h,(x) = pux(l - x) for (x,~) E X x 1 

then the answer to the question (posed in the last subsection) is 
“no”, by applying theorem 5. 

We indicate, informally, how such a construction can be 
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attempted. For each ,D E I, the function pux(l - x) is a C? function on 
X. So, we can construct, by applying the technique of Boldrin and 
Montrucchio (1986), a reduced form model (u,RJ), such that the 
policy function of this model, hP, is given by ,~ux(l -x). 

Recalling this construction, we note that the set n is chosen 
large enough to include the graph of the function &l - x) for each 
,u in I, and x in X. Then for a discount factor, 6, sufficiently small, 
we can find the reduced utility function u (in terms of the para- 
meters ,u and 6). 

In the present exercise, we make sure that the production 
function, f, satisfies f(x) 2 h,(x) for all p in I, and x in X. Then for 
the discount factor, S, sufficiently small, we can obtain the reduced 
utility function u. From the reduced utility function u, we can 
construct the felicity function, w, by defining 
w(x,c,p) = z&f(x) - c,~). A difficulty that can arise at this stage is 
that such a felicity function need not satisfy all the constraints 
imposed by (W.lHW.3). The key to overcoming this difficulty is to 
choose the discount factor sufficiently small. The formal construc- 
tion, in which this can be rigorously demonstrated, is provided in 
the next subsection. 

6.3. THE EXAMPLE 

Consider a class of economies, indexed by a parameter ,U E I= [1,4]. 
Each economy in this family has the same gross output function 
[satisfying (F.l)-(F.3)] and the same discount factor 6 E (0,l). The 
economies in this family differ in the specification of their felicity 
or one period return functions: w:8’2, x I+L@+ (w depending on the 
parameter ,L). For a fixed p E [1,4], the one period return function 
w(o,o,p) can be shown to satisfy (W.l)-(W.3). 

The numerical specifications are: 

f(x)= ( 1 
(16/6)x - 8r2 + (16/3)x4 for x E [0,0*5) 

for x Z 0.05 

6 = 04025 

The function w is specified in a more involved manner. To ease the 
writing, denote L z 98, a = 425, X G [O,l]; recall the family 

h,(x) = ,~x(l - x) for x E X, p E I, 

and define u: X2 x I+8 by 

u(x,z,p) = ax - 0.5Lx2 + zh(x,p) - 0.5 22 
- 6[az - 0.5 L22 + 0.05(h(z,p))2] 
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Define D cX2 by 
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D={(w>:cQfW) 

and a function w: D x I+W+ by 

The definition of w(o,o,~) can be extended to the domain fi as 
follows: for (c,x) E Sz with x > 1 (so that f(z) = 1, cd 1) define 

w(w,p) = w(&4 

Finally, define w(o,o,p) on 92, as follows: for (c,x) E %‘: with c >f(x), 
let w(c,w) = wW&w4. 

It can be shown (see Majumdar-Mitra, 1992) that the optimal 
transition function for this family is 

h,(x) = pr(l - x) for z e X, p e 1. 
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